


Django Cheat Sheet

Useful Django terminal commands

We recommend you don't use these commands before you
have been taught about them in the lesson content.

Getting started commands

Terminal Command Description Example

pip3 install
<package_name><optional_version_nu
mber>

Installs packages with an optional
version

pip3 install Django~=4.2.1

pip3 freeze --local > requirements.txt Creates/updates the requirements.txt
file

pip3 freeze --local > requirements.txt

django-admin startproject <proj_name>
.

Starts a django project, don't forget the
full stop [.] to start the project in the
current directory

django-admin startproject my_project .

python3 manage.py startapp
<app_name>

Creates a new Django app in the
Django project

python3 manage.py startapp blog



Migration and database commands

Terminal Command Description Example

python3 manage.py makemigrations Create migrations files for any new or
updated models across the entire
project

python3 manage.py makemigrations

python3 manage.py makemigrations
<app_name>

Create migrations files for any new or
updated models within the specified
app

python3 manage.py makemigrations
blog

python3 manage.py migrate Migrate your database with any new
migrations across the entire project

python3 manage.py migrate

python3 manage.py migrate
<app_name>

Migrate your database with any new
migrations within the specified app

python3 manage.py migrate blog

python3 manage.py migrate
<app_name> zero

Reverts all migrations for a specified
app to the initial state, effectively
undoing them.

python3 manage.py migrate blog zero

python3 manage.py makemigrations
--dry-run

Migration preview feature that allows
you to see potential model changes
without creating actual migration files,
enabling you to review changes before
committing.

python3 manage.py makemigrations
--dry-run

python3 manage.py makemigrations
--check

New: Checks if the current model states
match the database migrations without
actually making newmigrations.

python3 manage.py makemigrations
--check

--check is for ensuring all necessary migrations have been made (and is non-interactive), while --dry-run is for previewing
what migrations would be made without actually making them.



General commands

Terminal Command Description Example

python3 manage.py runserver Run your django app in the browser python3 manage.py runserver

python3 manage.py createsuperuser Creates an admin user for accessing the
Django Admin site.

python3 manage.py createsuperuser

python3 manage.py collectstatic Collects all static files from each of your
applications into a single location that
can easily be served in production. Only
need to use this when DEBUG is set to
False as Heroku will automatically
collectstatic.

python3 manage.py collectstatic

python3 manage.py loaddata
<fixture_name>

Loads data from a fixture into the
database. This is particularly useful for
setting up a database with predefined
data.

python3 manage.py loaddata
initial_data

python3 -V Displays your current Python version, for
example, if you need it to set up the
Heroku Python version

python3 -V

pip3 show <package_name> Gives information on the package
including its location in your file
structure

pip show django-allauth

cp -r <from>* <to> Copies files from one location to
another, for example when duplicating
package templates so you can
personalise them.

cp -r
/home/cistudent/.local/lib/python3.9/site
-packages/allauth/templates/*
./templates/



Testing commands

Terminal Command Description Example

python3 manage.py test Run all unit tests in files that start with
test_ across the entire project

python3 manage.py test

python3 manage.py test <app_name> Run all unit tests in files that start with
test_ inside the app specified

python3 manage.py test blog

python3 manage.py test
<app_name>.<file_name>

Run all unit tests in a specific test file
inside the app specified

python3 manage.py test
about.test_forms

python3 manage.py test
<app_name>.<file_name>.<class_name>

Run all unit tests in a specific class
within the location specified.

python3 manage.py test
about.test_forms.TestCollaborateForm

python3 manage.py test
<app_name>.<file_name>.<class_name>.
<test_name>

Run a single unit test within the
location specified.

python3 manage.py test
about.test_forms.TestCollaborateForm.t
est_form_is_valid



Other useful commands

Terminal Command Description Example

python3 manage.py dumpdata
<app_name> > <filename>.json

New: Creates a fixture (in JSON
format) from the current database.
It can be used for backup purposes
or to populate another database
with the same data.

python3 manage.py dumpdata blog
> blog_fixtures.json

python3 manage.py flush New: The flush command is
different frommigrate zero. When
you run python manage.py flush, it
doesn't undo migrations; instead, it
removes all data from the database
and resets primary key sequences
for all models.

python3 manage.py flush


